279 research outputs found

    DB white dwarfs in the Sloan Digital Sky Survey data release 10 and 12

    Get PDF
    Aims. White dwarfs with helium-dominated atmospheres (spectral types DO, DB) comprise approximately 20% of all white dwarfs. There are fewer studies than of their hydrogen-rich counterparts (DA) and thus several questions remain open. Among these are the total masses and the origin of the hydrogen traces observed in a large number and the nature of the deficit of DBs in the range from 30 000−45 000K. We use the largest-ever sample (by a factor of 10) provided by the Sloan Digital Sky Survey (SDSS) to study these questions. Methods. The photometric and spectroscopic data of 1107 helium-rich objects from the SDSS are analyzed using theoretical model atmospheres. Along with the effective temperature and surface gravity, we also determine hydrogen and calcium abundances or upper limits for all objects. The atmosphere models are extended with envelope calculations to determine the extent of the helium convection zones and thus the total amount of hydrogen and calcium present. Results. When accounting for problems in determining surface gravities at low Teff, we find an average mass for helium-dominated white dwarfs of 0.606 ± 0.004 M , which is very similar to the latest determinations for DAs. There are 32% of the sample with detected hydrogen, but this increases to 75% if only the objects with the highest signal-to-noise ratios are considered. In addition, 10−12% show traces of calcium, which must come from an external source. The interstellar medium (ISM) is ruled out by the fact that all polluted objects show a Ca/H ratio that is much larger than solar. We also present arguments that demonstrate that the hydrogen is very likely not accreted from the ISM but is the result of convective mixing of a residual thin hydrogen layer with the developing helium convection zone. It is very important to carefully consider the bias from observational selection effects when drawing these conclusions

    Gaia white dwarfs within 40 pc : I. Spectroscopic observations of new candidates

    Get PDF
    We present a spectroscopic survey of 230 white dwarf candidates within 40 pc of the Sun from the William Herschel Telescope and Gran Telescopio Canarias. All candidates were selected from Gaia Data Release 2 (DR2) and in almost all cases, had no prior spectroscopic classifications. We find a total of 191 confirmed white dwarfs and 39 main-sequence star contaminants. The majority of stellar remnants in the sample are relatively cool (〈TeffâŒȘ = 6200 K), showing either hydrogen Balmer lines or a featureless spectrum, corresponding to 89 DA and 76 DC white dwarfs, respectively. We also recover two DBA white dwarfs and 9–10 magnetic remnants. We find two carbon-bearing DQ stars and 14 new metal-rich white dwarfs. This includes the possible detection of the first ultra-cool white dwarf with metal lines. We describe three DZ stars for which we find at least four different metal species, including one that is strongly Fe- and Ni-rich, indicative of the accretion of a planetesimal with core-Earth composition. We find one extremely massive (1.31 ± 0.01 M⊙) DA white dwarf showing weak Balmer lines, possibly indicating stellar magnetism. Another white dwarf shows strong Balmer line emission but no infrared excess, suggesting a low-mass sub-stellar companion. A high spectroscopic completeness (>99 per cent) has now been reached for Gaia DR2 sources within 40-pc sample, in the Northern hemisphere (ÎŽ > 0°) and located on the white dwarf cooling track in the Hertzsprung–Russell diagram. A statistical study of the full northern sample is presented in a companion paper

    New full evolutionary sequences of H- and He-atmosphere massive white dwarf stars using MESA

    Get PDF
    We explore the evolution of hydrogen-rich and hydrogen-deficient white dwarf stars with masses between 1.012 and 1.307M , and initial metallicity of Z = 0.02. These sequences are the result ofmain-sequence stars with masses between 8.8 and 11.8M . The simulations were performed with MESA (Modules for Experiments in Stellar Astrophysics), starting at the zeroage main sequence, through thermally pulsing and mass-loss phases, ending at the white dwarf cooling sequence. We present reliable chemical profiles for the whole mass range considered, covering the different expected central compositions (i.e. C/O, O/Ne and Ne/O/Mg) and its dependence on the stellar mass. In addition, we present detailed chemical profiles of hybrid C/O–O/Ne corewhite dwarfs, found in themass range between 1.024 and 1.15M .We present the initial-to-final mass relation, the mass–radius relation and cooling times considering the effects of atmosphere and core composition

    Asteroseismology of ZZ Ceti stars with fully evolutionary white dwarf models, I: The impact of tthe uncertainties from prior evolution on the period spectrum

    Get PDF
    Context. ZZ Ceti stars are pulsating white dwarfs with a carbon-oxygen core build up during the core helium burning and thermally pulsing Asymptotic Giant Branch phases. Through the interpretation of their pulsation periods by means of asteroseismology, details about their origin and evolution can be inferred. The whole pulsation spectrum exhibited by ZZ Ceti stars strongly depends on the inner chemical structure. At present, there are several processes affecting the chemical profiles that are still not accurately determined.Aims. We present a study of the impact of the current uncertainties of the white dwarf formation and evolution on the expected pulsation properties of ZZ Ceti stars.Methods. Our analysis is based on a set of carbon-oxygen core white dwarf models with masses 0.548 and 0.837 M⊙ that are derived from full evolutionary computations from the ZAMS to the ZZ Ceti domain. We considered models in which we varied the number of thermal pulses, the amount of overshooting, and the 12C(α,Îł)16O reaction rate within their uncertainties.Results. We explore the impact of these major uncertainties in prior evolution on the chemical structure and expected pulsation spectrum. We find that these uncertainties yield significant changes in the g-mode pulsation periods.Conclusions. We conclude that the uncertainties in the white dwarf progenitor evolution should be taken into account in detailed asteroseismological analyses of these pulsating stars.Fil: de GerĂłnimo, Francisco CĂ©sar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de AstrofĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Instituto de AstrofĂ­sica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas; ArgentinaFil: Althaus, Leandro Gabriel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de AstrofĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Instituto de AstrofĂ­sica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas; ArgentinaFil: Corsico, Alejandro Hugo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de AstrofĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas. Instituto de AstrofĂ­sica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂ­sicas; ArgentinaFil: Romero, Alejandra Daniela. Universidade Federal do Rio Grande do Sul; BrasilFil: Souza Oliveira, Kepler. Universidade Federal do Rio Grande do Sul; Brasi

    The sdA problem : III. New extremely low-mass white dwarfs and their precursors from Gaia astrometry

    Get PDF
    The physical nature of the sdA stars – cool hydrogen-rich objects with spectroscopic surface gravities intermediate between main-sequence and canonical-mass white dwarfs – has been elusive since they were found in Sloan Digital Sky Survey Data Release 12 spectra. The population is likely dominated by metal-poor A/F stars in the halo with overestimated surface gravities, with a small contribution of extremely low-mass white dwarfs and their precursors, i.e. ELMs and pre-ELMs. In this work, we seek to identify (pre-)ELMs with radii smaller than what is possible for main-sequence stars, allowing even for very low metallicity. We analyse 3891 sdAs previously identified in the Sloan Digital Sky Survey using Gaia DR2 data. Our Monte Carlo analysis supports that 90 of these are inconsistent with the main sequence. 37 lie close to or within the canonical white dwarf cooling sequence, while the remaining 53 lie between the canonical white dwarfs and main sequence, which we interpret as likely (pre-)ELMs given their spectral class. Of these, 30 pass more conservative criteria that allow for higher systematic uncertainties on the parallax, as well as an approximate treatment of extinction. Our identifications increase the number of known (pre-)ELMs by up to 50 per cent, demonstrating how Gaia astrometry can reveal members of the compact (pre-)ELM subpopulation of the sdA spectral class

    SDSS J124043.01+671034.68 : the partially burned remnant of a low-mass white dwarf that underwent thermonuclear ignition?

    Get PDF
    The white dwarf SDSS J124043.01+671034.68 (SDSS J1240+6710) was previously found to have an oxygen-dominated atmosphere with significant traces of neon, magnesium, and silicon. A possible origin via a violent late thermal pulse or binary interactions has been suggested to explain this very unusual photospheric composition. We report the additional detection of carbon, sodium, and aluminium in far-ultraviolet and optical follow-up spectroscopy. No iron-group elements are detected, with tight upper limits on titanium, iron, cobalt, and nickel, suggesting that the star underwent partial oxygen burning, but failed to ignite silicon burning. Modelling the spectral energy distribution and adopting the distance based on the Gaia parallax, we infer a low white dwarf mass, Mwd = 0.41 ± 0.05 M. The large space velocity of SDSS J1240+6710, computed from the Gaia proper motion and its radial velocity, is compatible with a Galactic rest-frame velocity of 250 km s−1 in the opposite direction with respect to the Galactic rotation, strongly supporting a binary origin of this star. We discuss the properties of SDSS J1240+6710 in the context of the recently identified survivors of thermonuclear supernovae, the D6 and LP 40−365 stars, and conclude that it is unlikely related to either of those two groups. We tentatively suggest that SDSS J1240+6710 is the partially burned remnant of a low-mass white dwarf that underwent a thermonuclear event

    The impact of the uncertainties in the 12C(α, γ ) 16O reaction rate on the evolution of low- to intermediate-mass stars

    Get PDF
    One of the largest uncertainties in stellar evolutionary computations is the accuracy of the considered reaction rates. The 12C(α, Îł ) 16O reaction is particularly important for the study of low- and intermediate-mass stars as it determines the final C/O ratio in the core which influences the white dwarf (WD) cooling evolution. Thus, there is a need for a study of how the computations of WDs and their progenitors that are made to date may be affected by the uncertainties of the 12C(α, Îł ) 16O reaction rates. In this work, we compute fully evolutionary sequences using the MESA code with initial masses in the range of 0.90 ≀ Mi/M ≀ 3.05. We consider different adopted reaction rates, obtained from the literature, as well as the extreme limits within their uncertainties. As expected, we find that previous to the core helium burning (CHB) stage, there are no changes to the evolution of the stars. However, the subsequent stages are all affected by the uncertainties of the considered reaction rate. In particular, we find differences to the convective core mass during the CHB stage which may affect pulsation properties of subdwarfs, the number of thermal pulses during the asymptotic giant branch and trends between final oxygen abundance in the core and the progenitor masses of the remnant WDs

    Evidence of spectral evolution on the white dwarf sample from the Gaia mission

    Get PDF
    Since the Gaia data release 2, several works have been published describing a bifurcation in the observed white dwarf colour−magnitude diagram for GBP−GRP>0. Some possible explanations in the literature include the existence of a double population with different initial mass functions or two distinct populations, one formed by hydrogen-envelope and one formed by helium-envelope white dwarfs. We propose instead spectral evolution to explain the bifurcation. From a population synthesis approach, we find that spectral evolution occurs for effective temperatures below ≃11000K and masses mainly between 0.64M⊙ and 0.74M⊙, which correspond to around 16 per cent of all DA white dwarfs. We also find that the Gaia white dwarf colour–magnitude diagram indicates a star formation history that decreases abruptly for objects younger than 1.4Gyr and a top-heavy initial mass function for the white dwarf progenitors

    White dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 16

    Get PDF
    White dwarfs are the end state of the evolution of more than 97 per cent of all stars, and therefore carry information on the structure and evolution of the Galaxy through their luminosity function and initial-to-final mass relation. Examining the new spectra of all white or blue stars in the Sloan Digital Sky Survey Data Release 16, we report the spectral classification of 2410 stars, down to our identification cut-off of signal-to-noise ratio equal to three. We newly identify 1404 DAs, 189 DZs, 103 DCs, 12 DBs, and nine CVs. The remaining objects are a mix of carbon or L stars (dC/L), narrow-lined hydrogen-dominated stars (sdA), dwarf F stars, and P Cyg objects. As white dwarf stars were not targeted by SDSS DR16, the number of new discoveries is much smaller than in previous releases. We also report atmospheric parameters and masses for a subset consisting of 555 new DAs, 10 new DBs, and 85 DZs for spectra with signal-to-noise ratio larger than 10

    Mysterious, variable, and extremely hot : white dwarfs showing ultra-high excitation lines : I. Photometric variability

    Get PDF
    Context. About 10% of all stars exhibit absorption lines of ultra-highly excited (UHE) metals (e.g., O viii) in their optical spectra when entering the white dwarf cooling sequence. This is something that has never been observed in any other astrophysical object, and poses a decades-long mystery in our understanding of the late stages of stellar evolution. The recent discovery of a UHE white dwarf that is both spectroscopically and photometrically variable led to the speculation that the UHE lines might be created in a shock-heated circumstellar magnetosphere. Aims. We aim to gain a better understanding of these mysterious objects by studying the photometric variability of the whole popula tion of UHE white dwarfs, and white dwarfs showing only the He ii line problem, as both phenomena are believed to be connected. Methods. We investigate (multi-band) light curves from several ground- and space-based surveys of all 16 currently known UHE white dwarfs (including one newly discovered) and eight white dwarfs that show only the He ii line problem. Results. We find that 75+8 −13% of the UHE white dwarfs, and 75+9 −19% of the He ii line problem white dwarfs are significantly photo metrically variable, with periods ranging from 0.22 d to 2.93 d and amplitudes from a few tenths to a few hundredths of a magnitude. The high variability rate is in stark contrast to the variability rate amongst normal hot white dwarfs (we find 9+4 −2%), marking UHE and He ii line problem white dwarfs as a new class of variable stars. The period distribution of our sample agrees with both the orbital period distribution of post-common-envelope binaries and the rotational period distribution of magnetic white dwarfs if we assume that the objects in our sample will spin-up as a consequence of further contraction. Conclusions. We find further evidence that UHE and He ii line problem white dwarfs are indeed related, as concluded from their overlap in the Gaia HRD, similar photometric variability rates, light-curve shapes and amplitudes, and period distributions. The lack of increasing photometric amplitudes towards longer wavelengths, as well as the nondetection of optical emission lines arising from the highly irradiated face of a hypothetical secondary in the optical spectra of our stars, makes it seem unlikely that an irradiated late-type companion is the origin of the photometric variability. Instead, we believe that spots on the surfaces of these stars and/or geometrical effects of circumstellar material might be responsible
    • 

    corecore